

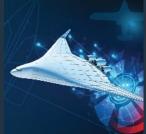
AVT-373 Research Specialists' Meeting on "Emerging Technologies for Proactive Corrosion Maintenance"

Nanomaterials-Based Sensors for Corrosion Detection and Monitoring for Proactive Aircraft Management

Lucy Li^{1*}, Mounia Chakik², Shiva Ashoori², Eyal Rosesheter³, Ravi Prakash², and Jingwen Guan⁴

^{1*} Aerospace Research Centre, National Research Council Canada, Ottawa, CANADA
 ² Department of Electronics Engineering, Carleton University, CANADA
 ³Department of Physics, Carleton University, CANADA
 ⁴ Security and Disruptive Technologies, National Research Council Canada, Ottawa, CANADA

Oct 9-11, Bastad, Sweden



NRC Aerospace

Programs and Focus Areas

Low Emission Aviation

Integrated Aerial Mobility

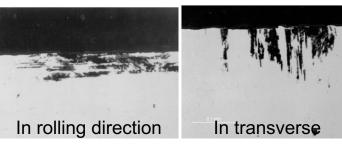
Aeronautical Product Development & Certification

Advanced Digital Aerospace Manufacturing

Air Travel Research

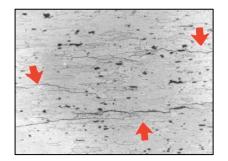
Key Objectives

- Chromate-free coating the Future is Not Without its Challenges:
 - Study Li- and Mg- rich chromate-free systems
 - Environmental corrosion sensors for on-aircraft application
 - Research and development of onboard sensors for direct corrosion detection (Low TRL)


Corrosion Types

Unform corrosion

Exfoliation of 7178-T6


Pitting Corrosion

Filiform corrosion

Fretting corrosion

Intergranular corrosion of 7075-T6 (including stress corrosion)

Galvanic corrosion (Ludmila, 2019)

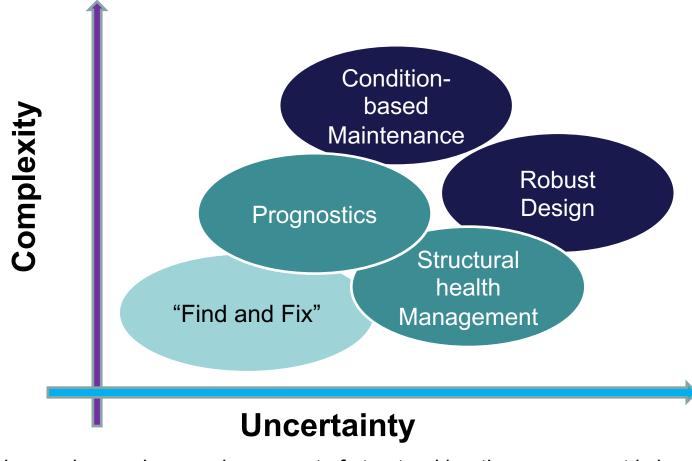
AVT-RSM-373

Challenges of Corrosion

Costs of Corrosion

- For the US Air Force, the cost of corrosion in the FY2018 was \$5.67 billion, or 23.6% of total maintenance costs*.
- 14% of total Non-available Days (NAD) for the Air Force aviation and missiles

Challenges


- Fixed schedule inspection could lead to "unnecessary" inspection, and/or unexpected and sometimes severe corrosion – downtime and costs;
- Chromate-free paint systems poses challenges in corrosion management;
- Galvanic corrosion an prevalent issue at the joints of Al/CFRP (carbon fibre reinforced plastic) with the increase in composites usage
- No good method to detect or predict breakdown coating / sealants a key factor in corrosion onset;

*Logistics Management Institute: Tysons, VA, USA, 2018.

Proactive Corrosion Management

Advanced corrosion sensing as part of structural heath management is key to proactive management

Matrix for Corrosion Detection

Key parameter to inspect for corrosion detection:

- Temperature
- Relatively Humidity
- Time-to-wetness
- Concentration of chloride ions: increases rate of corrosion and prevent generation of protective oxide layers on certain metals;
- Metal ions: high concentration of metal ions from water evaporation promotes corrosion
- Hydrogen and pH:
- UV and other electrolyte

Physical Factors

- •Damage to coatings / metals
- Mass loss
- Cracks
- Cyclic Loading

Environmental:

- •Relative Humidity
- •Temperature
- •Time-to-wetness
- Pollutant
- concentration
- •UV, heat, erosion

Chemical Factors

•pH

•Corrosion by-products: hydrogen, metal ions etc

Li et al. Sensors 2021, 21(9), 2908

Direct detection of corrosion events + continuous measurement of environmental parameters pertaining to corrosion = foundation for reliable corrosion management

Sensor Requirements

- Ultra-high sensitivity to detect corrosion by-products
- Tunable selectivity
- Compact
- Low power consumption
- Low cost fabrication
- Durable
- Wireless transmission on the ground only

Corrosion sensor types [Li, 2021]

Corrosion · Factors¤	Sensors¤	Description¤	Pros and cons¤
Physical¤	 → Visual/enhanced visual inspection¶ → Eddy current¶ → Radiography¶ → Thermography¶ → Electrical/inductive Resistance based mass loss sensors¶ → Ultrasonic Sensors¶ → Corrosion Potential-electric conductivity.¶ → Linear Polarization Resistance¶ → Galvanic corrosion sensor [17]¶ → Electrochemical Impedance Spectroscopy [18] → Electrochemical noise [19]¶ → Acoustic emission¤ 	 → Inspection of surface, intergranular, exfoliation and pitting corrosion.¶ → Measurements of mass loss, defects, cracks and coating degradation due to corrosion.¶ → Measurement of change in resistance, galvanic current, potential, impedance and acoustic emissions due to the presence of corrosion and the resulting mass loss.¤ 	 →Low-cost and broad applications.¶ →Mature technologies.¶ →Online or offline measurements.¶ →¶ →May not be able to distinguish corrosion from cracks.¶ →May be applicable to uniform corrosion only.¶ →Difficult to implement in distributed systems.¶ →Difficult to detect corrosion in hard-to-reach locations.¤
Environmental¤	 → Ion Selective Sensors (ISFET) [20]¶ → Electrochemical/biological sensors [20]¶ → Capacitive sensors [21][22]¶ → Fiber Optics¶ → Photosensors [23]¶ → Surface Acoustic Waves (SAW)¶ → Radio Frequency Identification (RFID) ¶ → Hydrogen probes [24]¤ 	 → Monitoring of environmental- factors responsible for- corrosion events such as- moisture, temperature and pollutants.¶ → Monitoring of environmental- factors through change in- electrical, optical and acoustic- responses of the sensors.¤ 	 →Real time on-board monitoring.¶ →Easy to integrate into moving components and hard-to-access locations.¶ →May be integrated into distributed networks.¶ →Possibility of wireless signal transfer.¶ → ¶ →Prone to electromagnetic interference.¶ →May be affected by exposure to harsh environments.¶ →Prone to signal noise.¤
Chemical¤	 → ISFET·[20]¶ → Electrochemical sensors ¶ → Capacitive sensors [22]¶ → Fiber Optics [25]¶ → Photosensors [23]¶ → pH sensors [[26]¶ → Color-indicating-paints [27]¤ 	 →Detection of by-products of corrosion such as, pH variation and metal ions.¶ →Change in electrical and optical response of sensors is induced by the presence of corrosion by-products.¤ 	 →Real-time on-board monitoring.¶ →Easy implementation in distributed systems.¶ →Versatile, compact and sensitive for chemical detection.¶ →High selectivity toward specific chemical species.¶ →Lack of long-term stability and vulnerability to noise.¶ →Selectivity issues in the presence of other chemical species.¤

Emerging Sensors

- Commonly used Methods
 - Visual inspection
 - Ultrasonic
 - Eddy current

Emerging Sensing Approaches

- Environmental sensors
- Fiber optics, phototransistors
- Chemical sensors
- Capacitive sensor
- Acoustic sensors
- Electrochemical sensors

2021, Mounia Chakik ©

Examples of Environment and Corrosivity Monitoring Device

Luna corrosion sensor

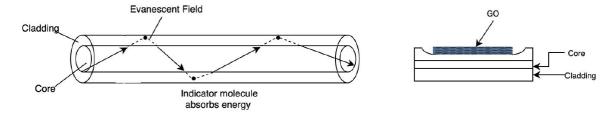
- Temperature and RH
- Conductance
- Free corrosion rate
- Galvanic corrosion
 rate

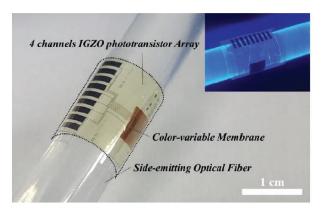
Galvanic Probe (Emerson)

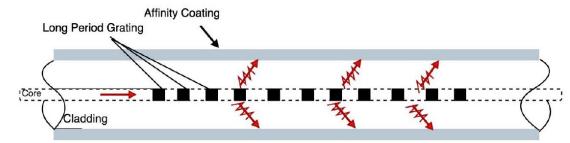
Micro Linear Polarization (LPR) Sensors - Embedded installed in the rear fuel bay bulkhead

Thin film μLPR sensor size of a stamp

Ultrasonic sensor monitoring petroleum pipeline (Emerson)


Acoustic Emission Sensor (Marposs) Electrochemical Impedance Spectroscopy (EIS) (Brown, 2014)





Fiber Optic Based Sensors

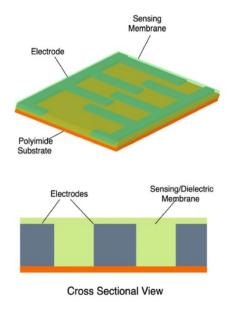
Backscattering optical fiber sensing with graphene coated fiber (Zhang, 2014)

Schematic of long period grating optical fiber sensing mechanism (Cooper, 2001)

Multifunctional colorimetric light-transmittancebased durability diagnostic system (Im, 2019)

Nanomaterials-based Electrochemical Thin Film Sensors

- Thin Film Transistors
 - Low-cost fabrication
 - High sensitivity
 - Fast response
 - Small footprint
 - Easy integration


- Organic Semiconductors
 - Abundance and diversity
 - Solution processability
 - Mechanical flexibility
 - Chemical reactivity
 - Chemical functionalization

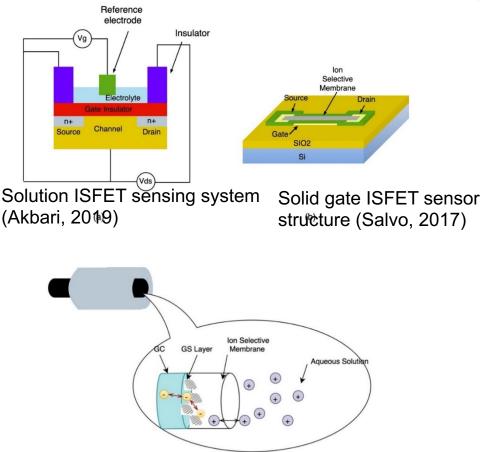
2021, Mounia Chakik ©

Nanomaterials-based Capacitive sensors

(a)

The structure of IDE based chemical sensor. [Khan, 2016]

Flexible GO-based capacitive humidity sensor [Alrammouz, 2019]


(b)

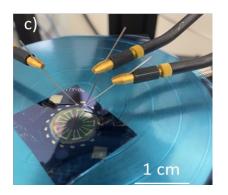
- Monitor the concentration of chemical species by measuring change in capacitance
- Commonly used for humidity and pH sensing
- An example of capacitive humidity sensor using ion-selective graphene oxide (GO) as the sensing layer
 - Sensitive
 - Porosity of self-assembled GO suited for air flow monitoring
 - Flexible
 - Issue with the sensors:
 - Selectivity
 - Long-term stability

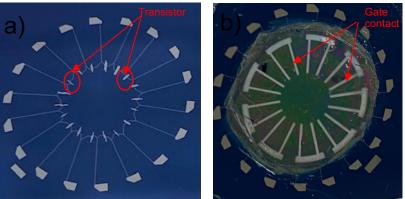
Nanomaterials-based Ion Selective Field Effect Transistor and Ion Selective Probes

GC/graphene ion selective electrode structure (Li, 2012)

Target lons Electrons

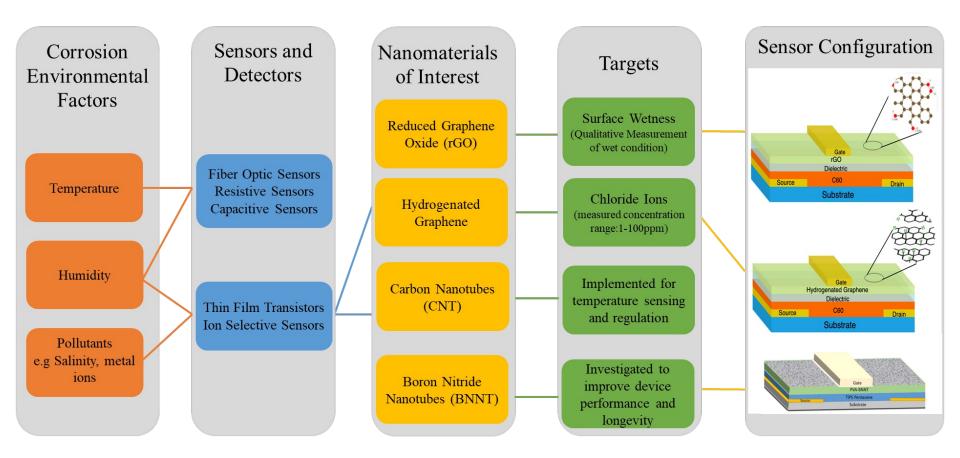
- Potentiometric sensors that produce electrical current or voltage variations in response to changes in ionic distribution;
- The sensing is conducted by coaing the gate electrode with an ionselective materials, such as metal oxides, to which specific ions reversibly bind to and modulate current and surface potential;
- Nanomaterials as gate channel allows for miniaturization of sensor device due to its high surface to volume ratio and high carrier mobility;
- Possibility of real time measurements of multiple ions concentration – such as chloride, other ions, and pH sensing in harsh environments


NATO


OTAN

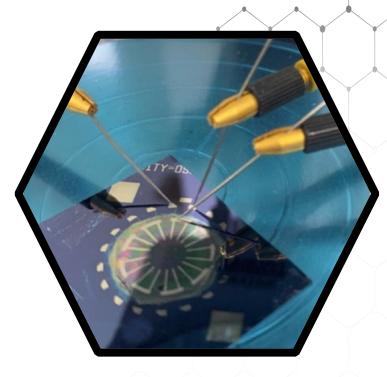
Sensor Nodes

a) Metal patterned Si/SiO₂ substrate. b) Solution processed OTFTs with top gate metal contact


- Sensor nodes are a multiparameter integrated sensor network, for real-time monitoring;
- Compact, lightweight;
- On-board prognostic possible;
- Wireless systems possible

AVT-RSM-373

Ongoing Corrosion Sensor Development Effort

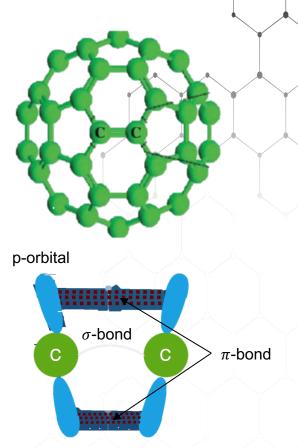

Moisture and Chloride Ion Sensing

Corrosion Monitoring

- Surface moisture
- Chloride ion (Cl-)

• Organic Thin Film (OTFT) Sensors

- \succ Fullerene C₆₀ modified electrodes
- Functionalized graphene oxide (GO)
- Functionalized graphene nanoparticle



Molecular Structure: Conjugated molecules

- Buckyball comprising 60 carbon atoms arranged in 20 hexagons and 12 pentagons.
- Conjugated molecules forming molecular crystals in FCC lattice through van der Waal bonds.

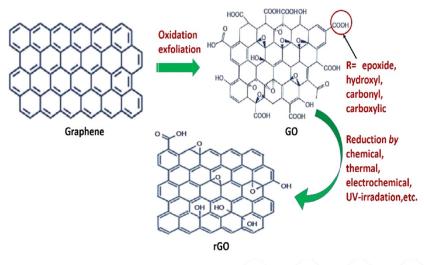
Electronic structure and attributes

- Totally filled HOMO band Semiconductor
- Partially filled LUMO band _____ Electron affinity
- Charge transport : Hopping mechanism
- Carrier mobility: 0.5 1.5 cm²/V.s
- Bandgap: 1.5 2.3 eV

Muhammad et al., J, Mater. Chem.C. (2013)

NATO UNCLASSIFIED + STO EOP

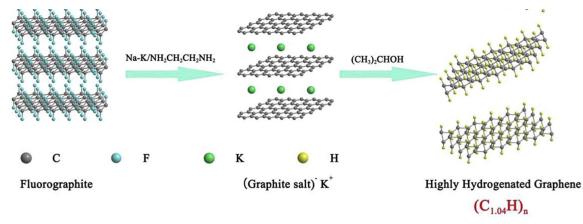
19


Reduced Graphene Oxide

- Improve solubility
- Chemical affinity toward water molecules

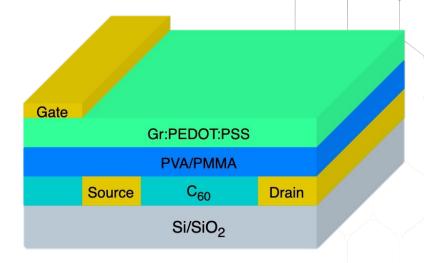
Sensing mechanism

 Electrical conductivity increases due to the increase in hole density resulting from bonding between water molecules and H₃O⁺.



Nurazzi et al., Nanotechnol. Rev. (2021)

Wet Chemical Synthesis: Modified Birch reduction

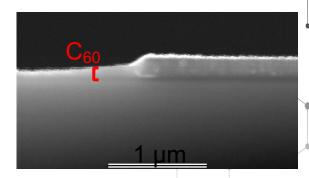

Y. Yang et al. / Carbon 107 (2016)

- Chemical affinity and selectivity toward Cl⁻.
- Sensing Mechanism: Ionic bonds between H⁺ and Cl⁻ reduces the charge density in hydrogenated graphene and decreases its electrical conductivity.

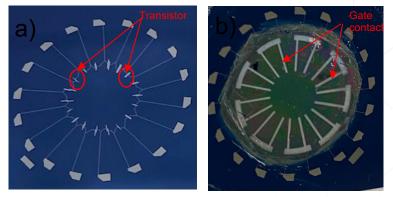
OTFT Architecture and Structure

- Device configuration
 - Top Gate Bottom Contact
- Structure
 - Substrate : Si\SiO₂
 - Metal contacts: Chromium
 - Semiconductor: Fullerene C₆₀
 - Multilayer gate dielectric: PVA\PMMA
 - Gate conductive polymer: Gr:PEDOT:PSS

C₆₀ OTFT device configuration and structural layers.


OTFT Fabrication

Metal Patterning


- UV-photolithography
- Negative lift off

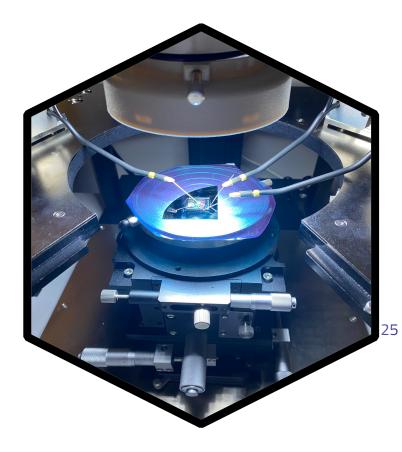
Material deposition

- C₆₀ in 1,2 dichlorobenzene: 120 nm
- PVA: 125 nm
- PMMA: 200 nm
- PEDOT:PSS: 1000nm
- Gr:PEDOT:PSS : 500nm
- Cr top gate contacts: 200nm

SEM cross sectional image of C_{60} thin film

a) Metal patterned Si/SiO₂ substrate. b) Solution processed OTFTs with top gate metal contact

Device Testing and Validation Results

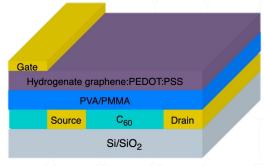

AVT-RSM-373

Device Characterization and Performance

- Dielectric Characterization using impedance analyser
 - ➢ C = 7.82 nF/cm²
- Output Characteristic: I_{DS} Vs V_{DS}
 - \succ V_{DS} = -2V to 30V
 - ➢ V_{GS} = 80mV, 500mV, 1V
- Transfer Characteristic: I_{DS} Vs V_{GS}
 - \succ V_{DS} = -1V to 5V
 - ➢ V_{DS} = 50mV, 100mV, 200mV

OTFT Sensor Configuration

Humidity Sensor


- Sensing material: rGO
- Response: increased electrical conductivity in the presence of water molecules.

Chloride ion sensor

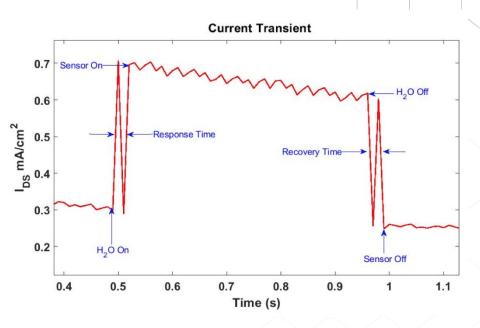
- Sensing material :Hydrogenated graphene
- Response: decreased electrical conductivity in the presence of Cl⁻.

Humidity sensor device configuration and structural layers.

Cl⁻ sensor device configuration and structural layers.

2021, Mounia Chakik ©

10 cm

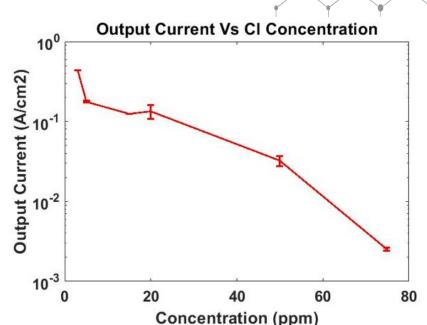

a)

Humidity Sensor Performance

- rGO OTFT wetness sensor designed for qualitative measurements of surface moisture;
- Qualitative measurement of surface moisture 95%RH
- Responsivity:

⊿I/I_{dry} = 122.6%

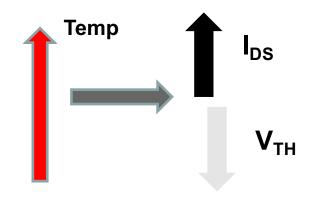
- Response time: 20 ms
- Recovery time: 20 ms

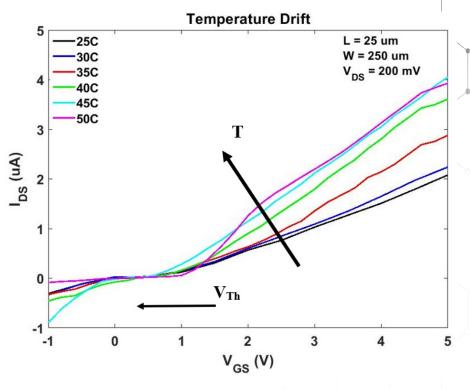


Current response of rGO coated OTFT sensor to the presence of surface moisture (95%RH)

Chloride Ion Sensor Performance

- Logarithmic response to increasing Clconcentration.
- Decreasing output current with increasing Clconcentration.
- Sensitivity to extra low concentrations far below corrosion onset thresholds (100ppm-3500ppm)
- Sensitivity:
 - ⊿I/(I_{ref} C) = 4% per ppm
- Sensor response stability after repeated measurements


2021, Mounia Chakik ©



Sensor Drift

• Thermal effects : 25°C to 50°C

Increase in device performance due to thermal excitation of free and localized charge carriers.

Transfer characteristic of OTFT sensor at increasing ambient temperature

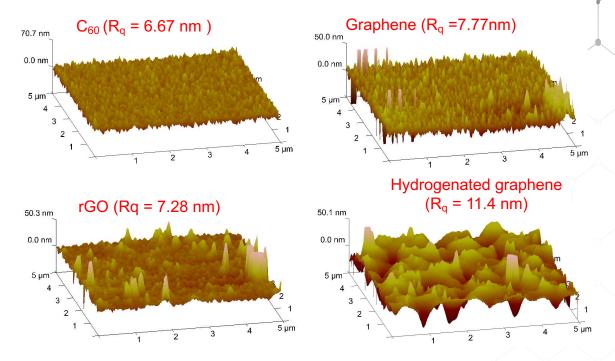
NATO UNCLASSIFIED + STO EOP

29

organizatio

Conclusion

- Low-cost and small footprint sensors targeting chemical and environmental for corrosion sensing;
- Solution processed organic thin film transistors.
- High responsivity (122%) and fast response (20ms) to surface moisture.
- Sensitivity (4%/ppm) to ultra fine concentrations of Cl⁻ (3ppm-75ppm)
- Consistent response after recurring measurements.
- Sensor experiences drift at increasing temperature, and temperature compensation needed.
- Ongoing work on carbon nanotube and boron nanotubes for new sensing functions (i.g. pH, metal ions...) and sensor durability
- Multi-analyte corrosion monitoring systems using arrays of OTFTs.



Thank You

Surface topology and roughness (R_q)

3D AFM images of C₆₀ thin film electrode and the functional gate layers: graphene, rGO and hydrogenated graphene

NATO UNCLASSIFIED + STO EOP

organizatio